Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Distributed Estimation of Graph 4-Profiles (1510.02215v2)

Published 8 Oct 2015 in cs.SI, cs.DC, and cs.DS

Abstract: We present a novel distributed algorithm for counting all four-node induced subgraphs in a big graph. These counts, called the $4$-profile, describe a graph's connectivity properties and have found several uses ranging from bioinformatics to spam detection. We also study the more complicated problem of estimating the local $4$-profiles centered at each vertex of the graph. The local $4$-profile embeds every vertex in an $11$-dimensional space that characterizes the local geometry of its neighborhood: vertices that connect different clusters will have different local $4$-profiles compared to those that are only part of one dense cluster. Our algorithm is a local, distributed message-passing scheme on the graph and computes all the local $4$-profiles in parallel. We rely on two novel theoretical contributions: we show that local $4$-profiles can be calculated using compressed two-hop information and also establish novel concentration results that show that graphs can be substantially sparsified and still retain good approximation quality for the global $4$-profile. We empirically evaluate our algorithm using a distributed GraphLab implementation that we scaled up to $640$ cores. We show that our algorithm can compute global and local $4$-profiles of graphs with millions of edges in a few minutes, significantly improving upon the previous state of the art.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.