Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The p-adic Gross-Zagier formula on Shimura curves (1510.02114v3)

Published 7 Oct 2015 in math.NT

Abstract: We prove a general formula for the $p$-adic heights of Heegner points on modular abelian varieties with potentially ordinary (good or semistable) reduction at the primes above $p$. The formula is in terms of the cyclotomic derivative of a Rankin-Selberg $p$-adic $L$-function, which we construct. It generalises previous work of Perrin-Riou, Howard, and the author, to the context of the work of Yuan-Zhang-Zhang on the archimedean Gross-Zagier formula and of Waldspurger on toric periods. We further construct analytic functions interpolating Heegner points in the anticyclotomic variables, and obtain a version of our formula for them. It is complemented, when the relevant root number is $+1$ rather than $-1$, by an anticyclotomic version of the Waldspurger formula. When combined with work of Fouquet, the anticyclotomic Gross-Zagier formula implies one divisibility in a $p$-adic Birch and Swinnerton-Dyer conjecture in anticyclotomic families. Other applications described in the text will appear separately.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube