Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dehn coloring and the dimer model for knots (1510.02023v1)

Published 7 Oct 2015 in math.GT

Abstract: Fox coloring provides a combinatorial framework for studying dihedral representations of the knot group. The less well-known concept of Dehn coloring captures the same data. Recent work of Carter-Silver-Williams clarifies the relationship between the two focusing on how one transitions between Fox and Dehn colorings. In our work, we relate Dehn coloring to the dimer model for knots showing that Dehn coloring data is encoded by a certain weighted balanced overlaid Tait graph. Using Kasteleyn theory, we provide graph theoretic methods for computing the determinant and Smith normal form of a knot. These constructions are closely related to Kauffman's work on a state sum for the Alexander polynomial.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.