Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Heavy traffic approximation for the stationary distribution of a generalized Jackson network: the BAR approach (1510.01249v2)

Published 5 Oct 2015 in math.PR

Abstract: In the seminal paper of Gamarnik and Zeevi (2006), the authors justify the steady-state diffusion approximation of a generalized Jackson network (GJN) in heavy traffic. Their approach involves the so-called limit interchange argument, which has since become a popular tool employed by many others who study diffusion approximations. In this paper we illustrate a novel approach by using it to justify the steady-state approximation of a GJN in heavy traffic. Our approach involves working directly with the basic adjoint relationship (BAR), an integral equation that characterizes the stationary distribution of a Markov process. As we will show, the BAR approach is a more natural choice than the limit interchange approach for justifying steady-state approximations, and can potentially be applied to the study of other stochastic processing networks such as multiclass queueing networks.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.