Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Non-Equispaced Grid Sampling in Photoacoustics with a Non-Uniform FFT (1510.01078v1)

Published 5 Oct 2015 in physics.med-ph and math.OC

Abstract: To obtain the initial pressure from the collected data on a planar sensor arrangement in photoacoustic tomography, there exists an exact analytic frequency domain reconstruction formula. An efficient realization of this formula needs to cope with the evaluation of the data's Fourier transform on a non-equispaced mesh. In this paper, we use the non-uniform fast Fourier transform to handle this issue and show its feasibility in 3D experiments with real and synthetic data. This is done in comparison to the standard approach that uses linear, polynomial or nearest neighbor interpolation. Moreover, we investigate the effect and the utility of flexible sensor location to make optimal use of a limited number of sensor points. The computational realization is accomplished by the use of a multi-dimensional non-uniform fast Fourier algorithm, where non-uniform data sampling is performed both in frequency and spatial domain. Examples with synthetic and real data show that both approaches improve image quality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube