Papers
Topics
Authors
Recent
2000 character limit reached

Posterior Exploration based Sequential Monte Carlo for Global Optimization (1509.08870v3)

Published 29 Sep 2015 in stat.CO

Abstract: We propose a global optimization algorithm based on the Sequential Monte Carlo (SMC) sampling framework. In this framework, the objective function is normalized to be a probabilistic density function (pdf), based on which a sequence of annealed target pdfs is designed to asymptotically converge on the set of global optima. A sequential importance sampling (SIS) procedure is performed to simulate the resulting targets, and the maxima of the objective function is assessed from the yielded samples. The disturbing issue lies in the design of the importance sampling (IS) pdf, which crucially influences the IS efficiency. We propose an approach to design the IS pdf online by embedding a posterior exploration (PE) procedure into each iteration of the SMC framework. The PE procedure can also explore the important regions of the parameter space supported by the target pdf. A byproduct of the PE procedure is an adaptive mechanism to design the annealing temperature schedule online. We compare the performance of the proposed algorithm with those of several existing related alternatives by applying them to over a dozen standard benchmark functions. The result demonstrates the appealing properties of our algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.