Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimization over Sparse Symmetric Sets via a Nonmonotone Projected Gradient Method

Published 29 Sep 2015 in math.OC, cs.LG, cs.NA, stat.CO, and stat.ML | (1509.08581v3)

Abstract: We consider the problem of minimizing a Lipschitz differentiable function over a class of sparse symmetric sets that has wide applications in engineering and science. For this problem, it is known that any accumulation point of the classical projected gradient (PG) method with a constant stepsize $1/L$ satisfies the $L$-stationarity optimality condition that was introduced in [3]. In this paper we introduce a new optimality condition that is stronger than the $L$-stationarity optimality condition. We also propose a nonmonotone projected gradient (NPG) method for this problem by incorporating some support-changing and coordintate-swapping strategies into a projected gradient method with variable stepsizes. It is shown that any accumulation point of NPG satisfies the new optimality condition and moreover it is a coordinatewise stationary point. Under some suitable assumptions, we further show that it is a global or a local minimizer of the problem. Numerical experiments are conducted to compare the performance of PG and NPG. The computational results demonstrate that NPG has substantially better solution quality than PG, and moreover, it is at least comparable to, but sometimes can be much faster than PG in terms of speed.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.