Papers
Topics
Authors
Recent
2000 character limit reached

On the generalized Buckley-Leverett equation (1509.07799v2)

Published 25 Sep 2015 in math.AP

Abstract: In this paper we study the generalized Buckley-Leverett equation with nonlocal regularizing terms. One of these regularizing terms is diffusive, while the other one is conservative. We prove that if the regularizing terms have order higher than one (combined), there exists a global strong solution for arbitrarily large initial data. In the case where the regularizing terms have combined order one, we prove the global existence of solution under some size restriction for the initial data. Moreover, in the case where the conservative regularizing term vanishes, regardless of the order of the diffusion and under certain hypothesis on the initial data, we also prove the global existence of strong solution and we obtain some new entropy balances. Finally, we provide numerics suggesting that, if the order of the diffusion is $0< \alpha<1$, a finite time blow up of the solution is possible.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.