Generic finiteness of minimal surfaces with bounded Morse index (1509.07101v4)
Abstract: Given a compact 3-manifold N without boundary, we prove that for a bumpy metric of positive scalar curvature the space of minimal surfaces having a uniform upper bound on the Morse index is always finite unless the manifold itself contains an embedded minimal RP2. In particular, we derive a generic finiteness result whenever N does not contain a copy of RP3 in its prime decomposition. We discuss the obstructions to any further generalization of such a result. When the metric g is required to be (scalar positive and) strongly bumpy (meaning that all closed, immersed minimal surfaces do not have Jacobi fields, a notion recently proved to be generic by B. White) the same conclusion holds true for any closed 3-manifold.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.