Papers
Topics
Authors
Recent
2000 character limit reached

Bandit Label Inference for Weakly Supervised Learning (1509.06807v1)

Published 22 Sep 2015 in cs.LG and stat.ML

Abstract: The scarcity of data annotated at the desired level of granularity is a recurring issue in many applications. Significant amounts of effort have been devoted to developing weakly supervised methods tailored to each individual setting, which are often carefully designed to take advantage of the particular properties of weak supervision regimes, form of available data and prior knowledge of the task at hand. Unfortunately, it is difficult to adapt these methods to new tasks and/or forms of data, which often require different weak supervision regimes or models. We present a general-purpose method that can solve any weakly supervised learning problem irrespective of the weak supervision regime or the model. The proposed method turns any off-the-shelf strongly supervised classifier into a weakly supervised classifier and allows the user to specify any arbitrary weakly supervision regime via a loss function. We apply the method to several different weak supervision regimes and demonstrate competitive results compared to methods specifically engineered for those settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.