Forward Backward Doubly Stochastic Differential Equations and the Optimal Filtering of Diffusion Processes (1509.06352v3)
Abstract: The connection between forward backward doubly stochastic differential equations and the optimal filtering problem is established without using the Zakai's equation. The solutions of forward backward doubly stochastic differential equations are expressed in terms of conditional law of a partially observed Markov diffusion process. It then follows that the adjoint time-inverse forward backward doubly stochastic differential equations governs the evolution of the unnormalized filtering density in the optimal filtering problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.