Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Permuting longitudinal data despite all the dependencies (1509.05570v2)

Published 18 Sep 2015 in stat.ME and stat.AP

Abstract: For general repeated measures designs the Wald-type statistic (WTS) is an asymptotically valid procedure allowing for unequal covariance matrices and possibly non-normal multivariate observations. The drawback of this procedure is the poor performance for small to moderate samples, i.e. decisions based on the WTS may become quite liberal. It is the aim of the present paper to improve its small sample behavior by means of a novel permutation procedure. In particular, it is shown that a permutation version of the WTS inherits its good large sample properties while yielding a very accurate finite sample control of the type-I error as shown in extensive simulations. Moreover, the new permutation method is motivated by a practical data set of a split plot design with a factorial structure on the repeated measures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.