Papers
Topics
Authors
Recent
2000 character limit reached

A Survey on the Eigenvalues Local Behavior of Large Complex Correlated Wishart Matrices (1509.04910v1)

Published 16 Sep 2015 in math.PR, math-ph, math.MP, math.ST, and stat.TH

Abstract: The aim of this note is to provide a pedagogical survey of the recent works by the authors ( arXiv:1409.7548 and arXiv:1507.06013) concerning the local behavior of the eigenvalues of large complex correlated Wishart matrices at the edges and cusp points of the spectrum: Under quite general conditions, the eigenvalues fluctuations at a soft edge of the limiting spectrum, at the hard edge when it is present, or at a cusp point, are respectively described by mean of the Airy kernel, the Bessel kernel, or the Pearcey kernel. Moreover, the eigenvalues fluctuations at several soft edges are asymptotically independent. In particular, the asymptotic fluctuations of the matrix condition number can be described. Finally, the next order term of the hard edge asymptotics is provided.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.