Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Splitting Compounds by Semantic Analogy (1509.04473v1)

Published 15 Sep 2015 in cs.CL

Abstract: Compounding is a highly productive word-formation process in some languages that is often problematic for natural language processing applications. In this paper, we investigate whether distributional semantics in the form of word embeddings can enable a deeper, i.e., more knowledge-rich, processing of compounds than the standard string-based methods. We present an unsupervised approach that exploits regularities in the semantic vector space (based on analogies such as "bookshop is to shop as bookshelf is to shelf") to produce compound analyses of high quality. A subsequent compound splitting algorithm based on these analyses is highly effective, particularly for ambiguous compounds. German to English machine translation experiments show that this semantic analogy-based compound splitter leads to better translations than a commonly used frequency-based method.

Citations (22)

Summary

We haven't generated a summary for this paper yet.