Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonsymmetric Askey-Wilson polynomials and $Q$-polynomial distance-regular graphs (1509.04433v2)

Published 15 Sep 2015 in math.CO

Abstract: In his famous theorem (1982), Douglas Leonard characterized the $q$-Racah polynomials and their relatives in the Askey scheme from the duality property of $Q$-polynomial distance-regular graphs. In this paper we consider a nonsymmetric (or Laurent) version of the $q$-Racah polynomials in the above situation. Let $\Gamma$ denote a $Q$-polynomial distance-regular graph that contains a Delsarte clique $C$. Assume that $\Gamma$ has $q$-Racah type. Fix a vertex $x \in C$. We partition the vertex set of $\Gamma$ according to the path-length distance to both $x$ and $C$. The linear span of the characteristic vectors corresponding to the cells in this partition has an irreducible module structure for the universal double affine Hecke algebra $\hat{H}q$ of type $(C{\vee}_1, C_1)$. From this module, we naturally obtain a finite sequence of orthogonal Laurent polynomials. We prove the orthogonality relations for these polynomials, using the $\hat{H}_q$-module and the theory of Leonard systems. Changing $\hat{H}_q$ by $\hat{H}{q{-1}}$ we show how our Laurent polynomials are related to the nonsymmetric Askey-Wilson polynomials, and therefore how our Laurent polynomials can be viewed as nonsymmetric $q$-Racah polynomials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.