Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Conjugate gradient acceleration of iteratively re-weighted least squares methods (1509.04063v2)

Published 14 Sep 2015 in math.NA

Abstract: Iteratively Re-weighted Least Squares (IRLS) is a method for solving minimization problems involving non-quadratic cost functions, perhaps non-convex and non-smooth, which however can be described as the infimum over a family of quadratic functions. This transformation suggests an algorithmic scheme that solves a sequence of quadratic problems to be tackled efficiently by tools of numerical linear algebra. Its general scope and its usually simple implementation, transforming the initial non-convex and non-smooth minimization problem into a more familiar and easily solvable quadratic optimization problem, make it a versatile algorithm. However, despite its simplicity, versatility, and elegant analysis, the complexity of IRLS strongly depends on the way the solution of the successive quadratic optimizations is addressed. For the important special case of $\textit{compressed sensing}$ and sparse recovery problems in signal processing, we investigate theoretically and numerically how accurately one needs to solve the quadratic problems by means of the $\textit{conjugate gradient}$ (CG) method in each iteration in order to guarantee convergence. The use of the CG method may significantly speed-up the numerical solution of the quadratic subproblems, in particular, when fast matrix-vector multiplication (exploiting for instance the FFT) is available for the matrix involved. In addition, we study convergence rates. Our modified IRLS method outperforms state of the art first order methods such as Iterative Hard Thresholding (IHT) or Fast Iterative Soft-Thresholding Algorithm (FISTA) in many situations, especially in large dimensions. Moreover, IRLS is often able to recover sparse vectors from fewer measurements than required for IHT and FISTA.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.