Papers
Topics
Authors
Recent
2000 character limit reached

Relational reasoning via probabilistic coupling

Published 11 Sep 2015 in cs.LO and cs.PL | (1509.03476v2)

Abstract: Probabilistic coupling is a powerful tool for analyzing pairs of probabilistic processes. Roughly, coupling two processes requires finding an appropriate witness process that models both processes in the same probability space. Couplings are powerful tools proving properties about the relation between two processes, include reasoning about convergence of distributions and stochastic dominance---a probabilistic version of a monotonicity property. While the mathematical definition of coupling looks rather complex and cumbersome to manipulate, we show that the relational program logic pRHL---the logic underlying the EasyCrypt cryptographic proof assistant---already internalizes a generalization of probabilistic coupling. With this insight, constructing couplings is no harder than constructing logical proofs. We demonstrate how to express and verify classic examples of couplings in pRHL, and we mechanically verify several couplings in EasyCrypt.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.