Papers
Topics
Authors
Recent
Search
2000 character limit reached

Categorical actions on unipotent representations I. Finite unitary groups

Published 10 Sep 2015 in math.RT | (1509.03269v1)

Abstract: Using Harish-Chandra induction and restriction, we construct a categorical action of a Kac-Moody algebra on the category of unipotent representations of finite unitary groups in non-defining characteristic. We show that the decategorified representation is naturally isomorphic to a direct sum of level 2 Fock spaces. From our construction we deduce that the Harish-Chandra branching graph coincide with the crystal graph of these Fock spaces, solving a recent conjecture of Gerber-Hiss-Jacon. We also obtain derived equivalences between blocks, yielding Brou\'e's abelian defect groups conjecture for unipotent $\ell$-blocks at linear primes $\ell$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.