Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Video Segmentation : Exploring Inference Efficiency

Published 4 Sep 2015 in cs.CV | (1509.02441v1)

Abstract: We explore the efficiency of the CRF inference beyond image level semantic segmentation and perform joint inference in video frames. The key idea is to combine best of two worlds: semantic co-labeling and more expressive models. Our formulation enables us to perform inference over ten thousand images within seconds and makes the system amenable to perform video semantic segmentation most effectively. On CamVid dataset, with TextonBoost unaries, our proposed method achieves up to 8% improvement in accuracy over individual semantic image segmentation without additional time overhead. The source code is available at https://github.com/subtri/video_inference

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.