Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On projective Kähler manifolds of partially positive curvature and rational connectedness (1509.02149v1)

Published 7 Sep 2015 in math.AG, math.CV, and math.DG

Abstract: In a previous paper, we proved that a projective K\"ahler manifold of positive total scalar curvature is uniruled. At the other end of the spectrum, it is a well-known theorem of Campana and Koll\'ar-Miyaoka-Mori that a projective K\"ahler manifold of positive Ricci curvature is rationally connected. In the present work, we investigate the intermediate notion of $k$-positive Ricci curvature and prove that for a projective $n$-dimensional K\"ahler manifold of $k$-positive Ricci curvature the MRC fibration has generic fibers of dimension at least $n-k+1$. We also establish an analogous result for projective K\"ahler manifolds of semi-positive holomorphic sectional curvature based on an invariant which records the largest codimension of maximal subspaces in the tangent spaces on which the holomorphic sectional curvature vanishes. In particular, the latter result confirms a conjecture of S.-T. Yau in the projective case.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.