Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence of a fully discrete variational scheme for a thin-film equation (1509.01513v1)

Published 4 Sep 2015 in math.NA and math.DS

Abstract: This paper is concerned with a rigorous convergence analysis of a fully discrete Lagrangian scheme for the Hele-Shaw flow, which is the fourth order thin-film equation with linear mobility in one space dimension. The discretization is based on the equation's gradient flow structure in the $L2$-Wasserstein metric. Apart from its Lagrangian character --- which guarantees positivity and mass conservation --- the main feature of our discretization is that it dissipates both the Dirichlet energy and the logarithmic entropy. The interplay between these two dissipations paves the way to proving convergence of the discrete approximations to a weak solution in the discrete-to-continuous limit. Thanks to the time-implicit character of the scheme, no CFL-type condition is needed. Numerical experiments illustrate the practicability of the scheme.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.