2000 character limit reached
The nuclear dimension of C*-algebras associated to homeomorphisms
Published 4 Sep 2015 in math.OA | (1509.01508v2)
Abstract: We show that if X is a finite dimensional locally compact Hausdorff space, then the crossed product of C_0(X) by any automorphism has finite nuclear dimension. This generalizes previous results, in which the automorphism was required to be free. As an application, we show that group C*-algebras of certain non-nilpotent groups have finite nuclear dimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.