Papers
Topics
Authors
Recent
2000 character limit reached

On the distance spectra of graphs (1509.01196v2)

Published 3 Sep 2015 in math.CO

Abstract: The distance matrix of a graph $G$ is the matrix containing the pairwise distances between vertices. The distance eigenvalues of $G$ are the eigenvalues of its distance matrix and they form the distance spectrum of $G$. We determine the distance spectra of halved cubes, double odd graphs, and Doob graphs, completing the determination of distance spectra of distance regular graphs having exactly one positive distance eigenvalue. We characterize strongly regular graphs having more positive than negative distance eigenvalues. We give examples of graphs with few distinct distance eigenvalues but lacking regularity properties. We also determine the determinant and inertia of the distance matrices of lollipop and barbell graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.