A Preconditioner Based on Low-Rank Approximation of Schur Complements (1508.07798v1)
Abstract: We introduce a preconditioner based on a hierarchical low-rank compression scheme of Schur complements. The construction is inspired by standard nested dissection, and relies on the assumption that the Schur complements can be approximated, to high precision, by Hierarchically-Semi-Separable matrices. We build the preconditioner as an approximate $LDMt$ factorization of a given matrix $A$, and no knowledge of $A$ in assembled form is required by the construction. The $LDMt$ factorization is amenable to fast inversion, and the action of the inverse can be determined fast as well. We investigate the behavior of the preconditioner in the context of DG finite element approximations of elliptic and hyperbolic problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.