2000 character limit reached
Model selection in logistic regression (1508.07537v1)
Published 30 Aug 2015 in math.ST and stat.TH
Abstract: This paper is devoted to model selection in logistic regression. We extend the model selection principle introduced by Birg\'e and Massart (2001) to logistic regression model. This selection is done by using penalized maximum likelihood criteria. We propose in this context a completely data-driven criteria based on the slope heuristics. We prove non asymptotic oracle inequalities for selected estimators. Theoretical results are illustrated through simulation studies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.