Heegner divisors in generalized Jacobians and traces of singular moduli (1508.07112v2)
Abstract: We prove an abstract modularity result for classes of Heegner divisors in the generalized Jacobian of a modular curve associated to a cuspidal modulus. Extending the Gross-Kohnen-Zagier theorem, we prove that the generating series of these classes is a weakly holomorphic modular form of weight 3/2. Moreover, we show that any harmonic Maass forms of weight 0 defines a functional on the generalized Jacobian. Combining these results, we obtain a unifying framework and new proofs for the Gross-Kohnen-Zagier theorem and Zagier's modularity of traces of singular moduli, together with new geometric interpretations of the traces with non-positive index.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.