Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A generalized SXP rule proved by bijections and involutions (1508.07030v2)

Published 27 Aug 2015 in math.CO and math.RT

Abstract: This paper proves a combinatorial rule expressing the product $s_\tau(s_{\lambda/\mu} \circ p_r)$ of a Schur function and the plethysm of a skew Schur function with a power sum symmetric function as an integral linear combination of Schur functions. This generalizes the SXP rule for the plethysm $s_\lambda \circ p_r$. Each step in the proof uses either an explicit bijection or a sign-reversing involution. The proof is inspired by an earlier proof of the SXP rule due to Remmel and Shimozono, A simple proof of the Littlewood--Richardson rule and applications, Discrete Mathematics 193 (1998) 257--266. The connections with two later combinatorial rules for special cases of this plethysm are discussed. Two open problems are raised. The paper is intended to be readable by non-experts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.