Papers
Topics
Authors
Recent
2000 character limit reached

Most Likely Transformations (1508.06749v4)

Published 27 Aug 2015 in stat.ME

Abstract: We propose and study properties of maximum likelihood estimators in the class of conditional transformation models. Based on a suitable explicit parameterisation of the unconditional or conditional transformation function, we establish a cascade of increasingly complex transformation models that can be estimated, compared and analysed in the maximum likelihood framework. Models for the unconditional or conditional distribution function of any univariate response variable can be set-up and estimated in the same theoretical and computational framework simply by choosing an appropriate transformation function and parameterisation thereof. The ability to evaluate the distribution function directly allows us to estimate models based on the exact likelihood, especially in the presence of random censoring or truncation. For discrete and continuous responses, we establish the asymptotic normality of the proposed estimators. A reference software implementation of maximum likelihood-based estimation for conditional transformation models allowing the same flexibility as the theory developed here was employed to illustrate the wide range of possible applications.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.