Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Decomposition and limit theorems for a class of self-similar Gaussian processes (1508.06641v1)

Published 26 Aug 2015 in math.PR

Abstract: We introduce a new class of self-similar Gaussian stochastic processes, where the covariance is defined in terms of a fractional Brownian motion and another Gaussian process. A special case is the solution in time to the fractional-colored stochastic heat equation described in Tudor (2013). We prove that the process can be decomposed into a fractional Brownian motion (with a different parameter than the one that defines the covariance), and a Gaussian process first described in Lei and Nualart (2008). The component processes can be expressed as stochastic integrals with respect to the Brownian sheet. We then prove a central limit theorem about the Hermite variations of the process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.