Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Mechanism Design via Dantzig-Wolfe Decomposition (1508.04250v2)

Published 18 Aug 2015 in cs.GT and cs.DS

Abstract: In random allocation rules, typically first an optimal fractional point is calculated via solving a linear program. The calculated point represents a fractional assignment of objects or more generally packages of objects to agents. In order to implement an expected assignment, the mechanism designer must decompose the fractional point into integer solutions, each satisfying underlying constraints. The resulting convex combination can then be viewed as a probability distribution over feasible assignments out of which a random assignment can be sampled. This approach has been successfully employed in combinatorial optimization as well as mechanism design with or without money. In this paper, we show that both finding the optimal fractional point as well as its decomposition into integer solutions can be done at once. We propose an appropriate linear program which provides the desired solution. We show that the linear program can be solved via Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition is a direct implementation of the revised simplex method which is well known to be highly efficient in practice. We also show how to use the Benders decomposition as an alternative method to solve the problem. The proposed method can also find a decomposition into integer solutions when the fractional point is readily present perhaps as an outcome of other algorithms rather than linear programming. The resulting convex decomposition in this case is tight in terms of the number of integer points according to the Carath{\'e}odory's theorem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube