Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Maximum Likelihood Estimation for Wishart processes (1508.03323v2)

Published 13 Aug 2015 in math.ST, math.PR, and stat.TH

Abstract: In the last decade, there has been a growing interest to use Wishart processes for modelling, especially for financial applications. However, there are still few studies on the estimation of its parameters. Here, we study the Maximum Likelihood Estimator (MLE) in order to estimate the drift parameters of a Wishart process. We obtain precise convergence rates and limits for this estimator in the ergodic case and in some nonergodic cases. We check that the MLE achieves the optimal convergence rate in each case. Motivated by this study, we also present new results on the Laplace transform that extend the recent findings of Gnoatto and Grasselli and are of independent interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.