Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds for the logarithm of the Euler gamma function and its derivatives (1508.03267v1)

Published 13 Aug 2015 in math.CA

Abstract: We consider differences between $\log \Gamma(x)$ and truncations of certain classical asymptotic expansions in inverse powers of $x-\lambda$ whose coefficients are expressed in terms of Bernoulli polynomials $B_n(\lambda)$, and we obtain conditions under which these differences are strictly completely monotonic. In the symmetric cases $\lambda=0$ and $\lambda=1/2$, we recover results of Sonin, N\"orlund and Alzer. Also we show how to derive these asymptotic expansions using the functional equation of the logarithmic derivative of the Euler gamma function, the representation of $1/x$ as a difference $F(x+1)-F(x)$, and a backward induction.

Summary

We haven't generated a summary for this paper yet.