Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional part integral representation for derivatives of a function related to ln Gamma(x+1) (1101.4257v2)

Published 22 Jan 2011 in math-ph and math.MP

Abstract: For $0\neq x>-1$ let $$\Delta(x)={{\ln \Gamma(x+1)} \over x}.$$ Recently Adell and Alzer proved the complete monotonicity of $\Delta'$ on $(-1,\infty)$ by giving an integral representation of $(-1)n \Delta{(n+1)}(x)$ in terms of the Hurwitz zeta function $\zeta(s,a)$. We reprove this integral representation in different ways, and then re-express it in terms of fractional part integrals. Special cases then have explicit evaluations. Other relations for $\Delta{(n+1)}(x)$ are presented, including its leading asymptotic form as $x \to \infty$.

Summary

We haven't generated a summary for this paper yet.