Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete monotonicity of a family of functions involving the tri- and tetra-gamma functions (1301.0156v1)

Published 2 Jan 2013 in math.CA

Abstract: The psi function $\psi(x)$ is defined by $\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}$ and $\psi{(i)}(x)$ for $i\in\mathbb{N}$ denote polygamma functions, where $\Gamma(x)$ is the gamma function. In this paper, we prove that the function $$ [\psi'(x)]2+\psi"(x)-\frac{x2+\lambda x+12}{12x4(x+1)2} $$ is completely monotonic on $(0,\infty)$ if and only if $\lambda\le0$, and so is its negative if and only if $\lambda\ge4$. From this, some inequalities are refined and sharpened.

Summary

We haven't generated a summary for this paper yet.