Papers
Topics
Authors
Recent
2000 character limit reached

Statistical framework for estimating GNSS bias (1508.02957v1)

Published 12 Aug 2015 in astro-ph.IM and physics.data-an

Abstract: We present a statistical framework for estimating global navigation satellite system (GNSS) non-ionospheric differential time delay bias. The biases are estimated by examining differences of measured line integrated electron densities (TEC) that are scaled to equivalent vertical integrated densities. The spatio-temporal variability, instrumentation dependent errors, and errors due to inaccurate ionospheric altitude profile assumptions are modeled as structure functions. These structure functions determine how the TEC differences are weighted in the linear least-squares minimization procedure, which is used to produce the bias estimates. A method for automatic detection and removal of outlier measurements that do not fit into a model of receiver bias is also described. The same statistical framework can be used for a single receiver station, but it also scales to a large global network of receivers. In addition to the Global Positioning System (GPS), the method is also applicable to other dual frequency GNSS systems, such as GLONASS (Globalnaya Navigazionnaya Sputnikovaya Sistema). The use of the framework is demonstrated in practice through several examples. A specific implementation of the methods presented here are used to compute GPS receiver biases for measurements in the MIT Haystack Madrigal distributed database system. Results of the new algorithm are compared with the current MIT Haystack Observatory MAPGPS bias determination algorithm. The new method is found to produce estimates of receiver bias that have reduced day-to-day variability and more consistent coincident vertical TEC values.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.