Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

No Regret Bound for Extreme Bandits (1508.02933v3)

Published 12 Aug 2015 in stat.ML, cs.LG, math.OC, math.ST, and stat.TH

Abstract: Algorithms for hyperparameter optimization abound, all of which work well under different and often unverifiable assumptions. Motivated by the general challenge of sequentially choosing which algorithm to use, we study the more specific task of choosing among distributions to use for random hyperparameter optimization. This work is naturally framed in the extreme bandit setting, which deals with sequentially choosing which distribution from a collection to sample in order to minimize (maximize) the single best cost (reward). Whereas the distributions in the standard bandit setting are primarily characterized by their means, a number of subtleties arise when we care about the minimal cost as opposed to the average cost. For example, there may not be a well-defined "best" distribution as there is in the standard bandit setting. The best distribution depends on the rewards that have been obtained and on the remaining time horizon. Whereas in the standard bandit setting, it is sensible to compare policies with an oracle which plays the single best arm, in the extreme bandit setting, there are multiple sensible oracle models. We define a sensible notion of "extreme regret" in the extreme bandit setting, which parallels the concept of regret in the standard bandit setting. We then prove that no policy can asymptotically achieve no extreme regret.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube