Papers
Topics
Authors
Recent
2000 character limit reached

Extremal functions in de Branges and Euclidean spaces II (1508.02436v1)

Published 10 Aug 2015 in math.CA and math.CV

Abstract: This paper presents the Gaussian subordination framework to generate optimal one-sided approximations to multidimensional real-valued functions by functions of prescribed exponential type. Such extremal problems date back to the works of Beurling and Selberg and provide a variety of applications in analysis and analytic number theory. Here we majorize and minorize (on $\mathbb{R}N$) the Gaussian ${\bf x} \mapsto e{-\pi \lambda |{\bf x}|2}$, where $\lambda >0$ is a free parameter, by functions with distributional Fourier transforms supported on Euclidean balls, optimizing weighted $L1$-errors. By integrating the parameter $\lambda$ against suitable measures, we solve the analogous problem for a wide class of radial functions. Applications to inequalities and periodic analogues are discussed. The constructions presented here rely on the theory of de Branges spaces of entire functions and on new interpolations tools derived from the theory of Laplace transforms of Laguerre-P\'{o}lya functions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.