Papers
Topics
Authors
Recent
2000 character limit reached

A q-difference Baxter's operator for the Ablowitz-Ladik chain (1508.01754v1)

Published 7 Aug 2015 in math-ph, math.MP, nlin.SI, and quant-ph

Abstract: We construct the Baxter's operator and the corresponding Baxter's equation for a quantum version of the Ablowitz Ladik model. The result is achieved by looking at the quantum analogue of the classical Backlund transformations. For comparison we find the same result by using the well-known Bethe ansatz technique. General results about integrable models governed by the same r-matrix algebra will be given. The Baxter's equation comes out to be a q-difference equation involving both the trace and the quantum determinant of the monodromy matrix. The spectrality property of the classical Backlund transformations gives a trace formula representing the classical analogue of the Baxter's equation. An explicit q-integral representation of the Baxter's operator is discussed.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.