Lumpings of Algebraic Markov Chains arise from Subquotients (1508.01570v3)
Abstract: A function on the state space of a Markov chain is a "lumping" if observing only the function values gives a Markov chain. We give very general conditions for lumpings of a large class of algebraically-defined Markov chains, which include random walks on groups and other common constructions. We specialise these criteria to the case of descent operator chains from combinatorial Hopf algebras, and, as an example, construct a "top-to-random-with-standardisation" chain on permutations that lumps to a popular restriction-then-induction chain on partitions, using the fact that the algebra of symmetric functions is a subquotient of the Malvenuto-Reutenauer algebra.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.