Papers
Topics
Authors
Recent
2000 character limit reached

Lumpings of Algebraic Markov Chains arise from Subquotients (1508.01570v3)

Published 6 Aug 2015 in math.CO and math.PR

Abstract: A function on the state space of a Markov chain is a "lumping" if observing only the function values gives a Markov chain. We give very general conditions for lumpings of a large class of algebraically-defined Markov chains, which include random walks on groups and other common constructions. We specialise these criteria to the case of descent operator chains from combinatorial Hopf algebras, and, as an example, construct a "top-to-random-with-standardisation" chain on permutations that lumps to a popular restriction-then-induction chain on partitions, using the fact that the algebra of symmetric functions is a subquotient of the Malvenuto-Reutenauer algebra.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.