Papers
Topics
Authors
Recent
Search
2000 character limit reached

Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds

Published 6 Aug 2015 in math.AG | (1508.01535v2)

Abstract: We obtain an algorithm computing the Chern-Schwartz-MacPherson (CSM) classes of Schubert cells in a generalized flag manifold G/B. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure-Lusztig type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of G/B. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold G/P. We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjectures to the torus equivariant setting.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.