Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Fisher's discriminant analysis with thresholded linear constraints (1508.01113v1)

Published 5 Aug 2015 in stat.ME

Abstract: Various regularized linear discriminant analysis (LDA) methods have been proposed to address the problems of the classic methods in high-dimensional settings. Asymptotic optimality has been established for some of these methods in high dimension when there are only two classes. A major difficulty in proving asymptotic optimality for multiclass classification is that the classification boundary is typically complicated and no explicit formula for classification error generally exists when the number of classes is greater than two. For the Fisher's LDA, one additional difficulty is that the covariance matrix is also involved in the linear constraints. The main purpose of this paper is to establish asymptotic consistency and asymptotic optimality for our sparse Fisher's LDA with thresholded linear constraints in the high-dimensional settings for arbitrary number of classes. To address the first difficulty above, we provide asymptotic optimality and the corresponding convergence rates in high-dimensional settings for a large family of linear classification rules with arbitrary number of classes, and apply them to our method. To overcome the second difficulty, we propose a thresholding approach to avoid the estimate of the covariance matrix. We apply the method to the classification problems for multivariate functional data through the wavelet transformations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.