Papers
Topics
Authors
Recent
2000 character limit reached

Derangements in finite classical groups for actions related to extension field and imprimitive subgroups and the solution of the Boston-Shalev conjecture

Published 31 Jul 2015 in math.GR and math.CO | (1508.00039v1)

Abstract: This is the fourth paper in a series. We prove a conjecture made independently by Boston et al and Shalev. The conjecture asserts that there is an absolute positive constant delta such that if G is a finite simple group acting transitively on a set of size n > 1, then the proportion of derangements in G is greater than delta. We show that with possibly finitely many exceptions, one can take delta = .016. Indeed, we prove much stronger results showing that for many actions, the proportion of derangements goes to 1 as n increases and prove similar results for families of permutation representations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.