Papers
Topics
Authors
Recent
2000 character limit reached

Serre's Tensor Construction and Moduli of Abelian Schemes (1507.07607v4)

Published 27 Jul 2015 in math.NT and math.AG

Abstract: Given a polarized abelian scheme with action by a ring, and a projective finitely presented module over that ring, Serre's tensor construction produces a new abelian scheme. We show that to equip these abelian schemes with polarizations it's enough to equip the projective modules with non-degenerate positive-definite hermitian forms. As an application, we relate certain moduli spaces of principally polarized abelian schemes with action by the ring of integers of a CM field. More specifically, we consider integral models of zero-dimensional Shimura varieties associated to compact unitary groups. We show that all abelian schemes in such moduli spaces are, \'etale locally over their base schemes, Serre constructions of CM abelian schemes with positive-definite hermitian modules. We also describe the morphisms between such objects in terms of morphisms between the constituent data, and formulate these relations as an isomorphism of algebraic stacks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.