Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the Bifurcation and Stability of Single and Multiple Vortex Rings in Three-Dimensional Bose-Einstein Condensates

Published 27 Jul 2015 in cond-mat.quant-gas and nlin.PS | (1507.07606v1)

Abstract: In the present work, we investigate how single- and multi-vortex-ring states can emerge from a planar dark soliton in three-dimensional (3D) Bose-Einstein condensates (confined in isotropic or anisotropic traps) through bifurcations. We characterize such bifurcations quantitatively using a Galerkin-type approach, and find good qualitative and quantitative agreement with our Bogoliubov-de Gennes (BdG) analysis. We also systematically characterize the BdG spectrum of the dark solitons, using perturbation theory, and obtain a quantitative match with our 3D BdG numerical calculations. We then turn our attention to the emergence of single- and multi-vortex-ring states. We systematically capture these as stationary states of the system and quantify their BdG spectra numerically. We find that although the vortex ring may be unstable when bifurcating, its instabilities weaken and may even eventually disappear, for sufficiently large chemical potentials and suitable trap settings. For instance, we demonstrate the stability of the vortex ring for an isotropic trap in the large chemical potential regime.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.