Papers
Topics
Authors
Recent
2000 character limit reached

Formal Groups and $Z$-Entropies (1507.07436v4)

Published 27 Jul 2015 in math-ph, cond-mat.stat-mech, math.MP, and nlin.CD

Abstract: We shall prove that the celebrated R\'enyi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the $Z$-entropies. Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and R\'enyi. A crucial aspect is that every $Z$-entropy is composable [1]. This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required, to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the $Z$-entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.