2000 character limit reached
Trace theorems for functions of bounded variation in metric spaces (1507.07006v1)
Published 24 Jul 2015 in math.MG
Abstract: In this paper we show existence of traces of functions of bounded variation on the boundary of a certain class of domains in metric measure spaces equipped with a doubling measure supporting a $1$-Poincar\'e inequality, and obtain $L1$ estimates of the trace functions. In contrast with the treatment of traces given in other papers on this subject, the traces we consider do not require knowledge of the function in the exterior of the domain. We also establish a Maz'ya-type inequality for functions of bounded variation that vanish on a set of positive capacity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.