Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

p-exponent and p-leaders, Part II: Multifractal Analysis. Relations to Detrended Fluctuation Analysis (1507.06641v3)

Published 10 Jul 2015 in math.CA

Abstract: Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image processing tool and is commonly used in numerous applications of different natures. In its common formulation, it relies on the H\"older exponent as a measure of local regularity, which is by nature restricted to positive values and can hence be used for locally bounded functions only. In this contribution, it is proposed to replace the H\"older exponent with a collection of novel exponents for measuring local regularity, the $p$-exponents. One of the major virtues of $p$-exponents is that they can potentially take negative values. The corresponding wavelet-based multiscale quantities, the $p$-leaders, are constructed and shown to permit the definition of a new multifractal formalism, yielding an accurate practical estimation of the multifractal properties of real-world data. Moreover, theoretical and practical connections to and comparisons against another multifractal formalism, referred to as multifractal detrended fluctuation analysis, are achieved. The performance of the proposed $p$-leader multifractal formalism is studied and compared to previous formalisms using synthetic multifractal signals and images, illustrating its theoretical and practical benefits. The present contribution is complemented by a companion article studying in depth the theoretical properties of $p$-exponents and the rich classification of local singularities it permits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube