Papers
Topics
Authors
Recent
2000 character limit reached

Estimation and uncertainty of reversible Markov models (1507.05990v2)

Published 19 Jul 2015 in physics.chem-ph, math-ph, math.MP, physics.comp-ph, physics.data-an, and stat.CO

Abstract: Reversibility is a key concept in Markov models and Master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model relies heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is therefore crucial to the successful application of the previously developed theory. In this work we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta- stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software - http://pyemma.org - as of version 2.0.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.