Self-similarity in the circular unitary ensemble (1507.05876v4)
Abstract: This paper gives a rigorous proof of a conjectured statistical self-similarity property of the eigenvalues random matrices from the Circular Unitary Ensemble. We consider on the one hand the eigenvalues of an $n \times n$ CUE matrix, and on the other hand those eigenvalues $e{i\phi}$ of an $mn \times mn$ CUE matrix with $|\phi| \le \pi / m$, rescaled to fill the unit circle. We show that for a large range of mesoscopic scales, these collections of points are statistically indistinguishable for large $n$. The proof is based on a comparison theorem for determinantal point processes which may be of independent interest.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.