Papers
Topics
Authors
Recent
Search
2000 character limit reached

Some measure-theoretic properties of U-statistics applied in statistical physics

Published 14 Jul 2015 in math.CA, cond-mat.stat-mech, and math.PR | (1507.03721v1)

Abstract: This paper investigates the relationship between various measure-theoretic properties of U-statistics with fixed sample size $N$ and the same properties of their kernels. Specifically, the random variables are replaced with elements in some measure space $(\Lambda; dx)$, the resultant real-valued functions on $\LambdaN$ being called generalized $N$-means. It is shown that a.e. convergence of sequences, measurability, essential boundedness and, under certain conditions, integrability with respect to probability measures of generalized $N$-means and their kernels are equivalent. These results are crucial for the solution of the inverse problem in classical statistical mechanics in the canonical formulation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.